chapter12_2_4 and chapter12_2_4_extra Modeling in the Frequency Domain for Example 12.2

We will learn how to use MATLAB's Symbolic Math Toolbox to solve a system of simultaneous equations which can be represented in matrix form as $A X=B$, where A is the matrix formed for the coefficients of the unknowns, B is a vector containing the input, and X is a vector containing the unknowns.

Tools used

Expression	Description
$\operatorname{det}(A)$	Evaluates the determinant of the square matrix argument
simple(s)	Simplifies the solution by shortening the length the symbolic function, s

Matrix input: this is simply accomplished by enclosing the entire matrix in a pair of square brackets and using a space to separate the each element, and using a semicolon to separate each row.
\% Onwubolu, G. C.
\% Mechatronics: Principles \& Applications
\% Elsevier
\%
\% Mechatronics: Principles \& Applications Toolbox Version 1.0
\% Copyright © 2005 by Elsevier
\%
\% Chapter 12 Modeling in the Frequency Domain
\%
\% Example 12.2 MATLAB's Symbolic Math Toolbox may be used to simplify
\% the solution of simultaneous equations by using Cramer's rule. A system of simultaneous
$\%$ equations can be represented in matrix form by $A x=B$, where A is the matrix formed
\% from the coefficients of the unknowns in the simultaneous equations, x is a vector
\% containing the unknowns, and B is a vector containing the inputs. Cramer's rule states
\% that xk , the kth element of the solution vector, x , is found using $\mathrm{xk}=$ $\operatorname{det}(A k) / \operatorname{det}(A)$,
$\%$ where $A k$ is the matrix formed by replacing the kth column of matrix A with the input
\% vector, B. In the text we refer to $\operatorname{det}(\mathrm{A})$ as "delta". In MATLAB matrices are written with a
\% space or comma separating the elements of each row. The next row is indicated with a
\% semicolon or carriage return. The entire matrix is then enclosed in a pair of square
\% brackets. Applying the above to the solution of Example 2.10:
\% $A=[(R 1+L * s)-L * s ;-L * s(L * s+R 2+(1 /(c * s)))]$ and $A k=[(R 1+L * s) V ;-L * s 0]$. The function
$\% \operatorname{det}($ matrix) evaluates the determinant of the square matrix argument. Let us now find
\% the transfer function $G(s)=12(s) / V(s)$, asked for in Example 2.10. The command
\% simple(S), where S is a symbolic function, is introduced in the solution.
Simple(S)
\% simplifies the solution by shortening the length of S . The use of simple(I2) shortens
\% the solution by combining like powers of the Laplace variable, s.
'Example 12.2' \% Display label.
syms s R1 R2 L1 L2 V \% Construct symbolic objects for frequency \% variable 's', and 'R1', 'L1', 'L2', and 'V'.
\%R1=360E+3; R2=200E+3;
\%L1=100E+3; L2=200E+3; V=50;
A2=[(R1+L1*S+R2) V;-R2 0] \% Form Ak = A2.
$A=[(R 1+L 1 * s+R 2)-R 2 ;-R 2(R 2+L 2 * s)]$
\% Form A.
I2=det(A2)/det(A); \quad \% Use Cramer's rule to solve for I2(s).
I2=simplify(I2); \quad \% Reduce complexity of I2(s).
$\mathrm{G}=\mathrm{I} 2 / \mathrm{V} ; \quad$ \% Form transfer function, $\mathrm{G}(\mathrm{s})=\mathrm{I} 2(\mathrm{~s}) / \mathrm{V}(\mathrm{s})$.
'G(s)' \% Display label.
pretty(G) \quad \% Pretty print G(s).
\%pause

